56 research outputs found

    Experimental detection of steerability in Bell local states with two measurement settings

    Full text link
    Steering, a quantum property stronger than entanglement but weaker than non-locality in the quantum correlation hierarchy, is a key resource for one-sided device-independent quantum key distribution applications, in which only one of the communicating parties is trusted. A fine-grained steering inequality was introduced in [PRA 90 050305(R) (2014)], enabling for the first time the detection of steering in all steerable two-qubit Werner states using only two measurement settings. Here we numerically and experimentally investigate this inequality for generalized Werner states and successfully detect steerability in a wide range of two-photon polarization-entangled Bell local states generated by a parametric down-conversion source.Comment: 9 pages, 7 figures (including Appendix

    Experimental Detection of Quantum Channels

    Full text link
    We demonstrate experimentally the possibility of efficiently detecting properties of quantum channels and quantum gates. The optimal detection scheme is first achieved for non entanglement breaking channels of the depolarizing form and is based on the generation and detection of polarized entangled photons. We then demonstrate channel detection for non separable maps by considering the CNOT gate and employing two-photon hyperentangled states.Comment: 8 pages, 9 figure

    Experimental investigation of practical unforgeable quantum money

    Full text link
    Wiesner's unforgeable quantum money scheme is widely celebrated as the first quantum information application. Based on the no-cloning property of quantum mechanics, this scheme allows for the creation of credit cards used in authenticated transactions offering security guarantees impossible to achieve by classical means. However, despite its central role in quantum cryptography, its experimental implementation has remained elusive because of the lack of quantum memories and of practical verification techniques. Here, we experimentally implement a quantum money protocol relying on classical verification that rigorously satisfies the security condition for unforgeability. Our system exploits polarization encoding of weak coherent states of light and operates under conditions that ensure compatibility with state-of-the-art quantum memories. We derive working regimes for our system using a security analysis taking into account all practical imperfections. Our results constitute a major step towards a real-world realization of this milestone protocol.Comment: 10 pages, 5 figure

    Experimental generation of entanglement from classical correlations via non-unital local noise

    Full text link
    We experimentally show how classical correlations can be turned into quantum entanglement, via the presence of non-unital local noise and the action of a CNOT gate. We first implement a simple two-qubit protocol in which entanglement production is not possible in the absence of local non-unital noise, while entanglement arises with the introduction of noise, and is proportional to the degree of noisiness. We then perform a more elaborate four-qubit experiment, by employing two hyperentangled photons initially carrying only classical correlations. We demonstrate a scheme where the entanglement is generated via local non-unital noise, with the advantage to be robust against local unitaries performed by an adversary.Comment: 8 pages, 4 figure

    Experimental observation of weak non-Markovianity

    Get PDF
    Non-Markovianity has recently attracted large interest due to significant advances in its characterization and its exploitation for quantum information processing. However, up to now, only non-Markovian regimes featuring environment to system backflow of information (strong non-Markovianity) have been experimentally simulated. In this work, using an all-optical setup we simulate and observe the so-called weak non-Markovian dynamics. Through full process tomography, we experimentally demonstrate that the dynamics of a qubit can be non-Markovian despite an always increasing correlation between the system and its environment which, in our case, denotes no information backflow. We also show the transition from the weak to the strong regime by changing a single parameter in the environmental state, leading us to a better understanding of the fundamental features of non-Markovianity.Comment: v2: final versio

    Path-polarization hyperentangled and cluster states of photons on a chip

    Get PDF
    Encoding many qubits in different degrees of freedom (DOFs) of single photons is one of the routes towards enlarging the Hilbert space spanned by a photonic quantum state. Hyperentangled photon states (i.e. states showing entanglement in multiple DOFs) have demonstrated significant implications for both fundamental physics tests and quantum communication and computation. Increasing the number of qubits of photonic experiments requires miniaturization and integration of the basic elements and functions to guarantee the set-up stability. This motivates the development of technologies allowing the precise control of different photonic DOFs on a chip. We demonstrate the contextual use of path and polarization qubits propagating within an integrated quantum circuit. We tested the properties of four-qubit linear cluster states built on both DOFs. Our results pave the way towards the full integration on a chip of hybrid multiqubit multiphoton states.Comment: 7 pages, 7 figures, RevTex4-1, Light: Science & Applications AAP:http://aap.nature-lsa.cn:8080/cms/accessory/files/AAP-lsa201664.pd
    corecore